Please help support our team! $25 buys a motor, $50 buys a new battery, $150 adds controllers and sensors, $500 pays tournament fees, $750 upgrades our drivetrain

Iron Reign

Welcome to Iron Reign at Dallas ISD's Science and Engineering Magnet

Iron Reign earns FTC World Championship Motivate Award

22 Apr 2018

Iron Reign earns FTC World Championship Motivate Award

Last week at the FIRST Tech Challenge (FTC) Robotics World Championship in Houston, Team 6832, Iron Reign, from the School of Science and Engineering in Dallas ISD earned the Motivate award which ranks them at the top in the outreach category.


Top Row: Justin Bonsell, Christian Saldana, Charlotte Leakey, Tycho Virani, Evan Daane, Austin Davis
Bottom: Janavi Chadha, Kenna Tanaka, Abhijit Bhattaru, Karina Lara and Ethan Helfman
coached by Karim Virani, Cathy Lux and Calvin Boykin

Each of the 5,200 active robotics teams this year is expected and encouraged to share their passion for robotics and all things Science, Technology, Engineering and Math (STEM) with younger students who haven't had the same opportunities. One hundred and twenty eight of these teams from around the world earned spots at this championship, including teams from the USA, Canada, Mexico, South America, the Middle East, the Pacific Rim and China. Iron Reign recieved this recognition for their work in creating, operating and sustaining the Mobile Tech eXPerience, an RV that they converted to a mobile STEM lab in order to support the work of Big Thought and the Dallas City of Learning Initiative.

On board the vehicle, students can learn to program one of sixteen sumo robots, design 3D objects and print them on one of the four 3D printers, learn to program in Scratch or create virtual worlds in Minecraft. The robotics team converted the vehicle and helped run the pilot program in summer 2016. This school year their goal has been to help Big Thought sustain the vehicle by continuing to support deployments, improve the curriculum and simply "make it loud." And now Big Thought is taking vehicle operations year-round. With this vehicle and accomplished instructors, Big Thought is bringing STEM exposure into under-served neighborhoods to help young students think of themselves as future engineers, scientists or technologists. This year alone the team has contributed 680 hours supporting 15 deployments of the vehicle to neighborhoods and large events. They've taught or spoken with over 3,400 students or parents at these events, and they've shared curriculum and the story of the vehicle nationwide by participating at the National Science Teachers Association STEM Expo.

This video will tell you more about the MXP from the perspective of the team members:

In the robot game the team finished 26 of 64 teams in their division, a good showing for a first-time Worlds team with a new young drive team. And Dr. Woodie Flowers, lead mentor of FIRST and Professor Emeritus at MIT signed and kissed our robot:

The team is fully appreciative of all of the support they've received this year. Special mention goes to Big Thought, Jeff Marx and Joe Schelanko of the Dallas ISD STEM Department, the SEM PTSA, the School of Science and Engineering staff and our advisor Calvin Boykin, Principal Andrew Palacios, Executive Director Tiffany Huitt and the tireless parents of all team members.

Please see the team website for more information. The team will be going to the UIL State Championship in Austin on May 18. Finally, here is our robot reveal:

School of Science and Engineering Freshman Orientation

26 Apr 2018

School of Science and Engineering Freshman Orientation By Austin and Shaggy

Today, we attended the Science and Engineering Magnet's annual freshman orientation. Everyone who is admitted to SEM is required to attend because parents and students get important information about the coming school year, in addition to learning about all the clubs and activities SEM offers. Almost every single one of SEM's organizations come out and talk to incoming students.
All but one of our team members attend SEM so most of us have experienced the event firsthand. When we first came to SEM, none of us really knew what extracurriculars we wanted to do. This event was a great opportunity, not only to tell students about FIRST and Iron Reign, but to meet the people we'll be spending the next year(s) with.

Since more than half of our team are going to graduating next year, we're already thinking about the 2019-2020 season. We want to start members early so we can ensure an effective transfer of knowledge between our rising juniors and new teammates. The best way to learn is through hands-on experience that this coming season could give them.

We drove it through the crowd and spoke to over 20 families about our work in FTC, the robot, competition, and more. Honestly, the robot is a real crowd-pleaser, and the real reason we had the largest audience during the event.There were five kids who were very interested in FTC. We were answering much more specific questions with them, like what the time commitment is, why we chose specific parts, etc. It was great to see such enthusiasm for STEM at such a young age! At one point, they started giving us building suggestions like where to add support bars.
The parents had questions as well and expressed their willingness to support the team.

In the midst of answering questions and demoing the robot, we talked to our principal, Mr. Palacios, who congratulated us on our win at Worlds and was excited to see the finished robot.

Overall, the event was a big success. We made lots of meaningful connections with incoming students and have some prospective members. We look forward to attending next year and maybe welcoming some new teammates.

You can watch a short video of the event here

Finishing the Chassis

29 Apr 2018

Finishing the Chassis By Kenna and Janavi

Task: Build a Chassis

We have been working on this chassis, on and off, for over three months. Just about every part of it has been built, disassembled, and rebuilt more than twice. In out last post, we had thought the wheels were ready to go. However, various parts had been put on backwards or were unusable so we had to do everything over again. Once we had rebuilt, we realized that there were even more issues. So we fixed those and built them again. Both of us could probably assemble wheels, motors, and chains in our sleep.
Now that the robot has wheels, we started on attaching the REV expansion hub and battery. The chassis is square, but has an asymmetrical structure of tetrix bars. Attaching the battery was the simple part since previous version of the robot had a 3D-printed battery holder that would be screwed on. After a short search, we found it in a box of 3D-printed parts whose prime was long over. There was no way to effectively place the expansion hub on the tetrix rails. Instead, we attached a thin plank of wood to two parallel bars, drilled a couple holes, and screwed the hub on.
Overall, it is a very no-frills chassis. We had to cut most of the side shields off because they were becoming more of an obstruction than an aid. Though it was a pain to build and rebuild every aspect of the chassis, we gained a lot of building experience out of one robot. We chose a relatively difficult design to built for the first time but, in the end, it was functional and that's all we can really ask for.

Next Steps

Though the physical robot has been built, it has no code. Both of us will be learning how to program a basic pushbot.

Swerve Drive Experiment

02 Jun 2018

Swerve Drive Experiment By Abhi

Task: Consider a Swerve Drive base

During the entire season of Relic Recovery, we saw many robots both in and outside our region that had a swerve drive. As Iron Reign, we never considered a swerve drive in the past but seeing all the robots, I wanted to see if it was maybe possible. One motivation was that I didn't like how slow mechanums were. Swerves generally use traction wheels and create a faster speed than usually can be found with mechanum. Also, it seemed as if swerve could provide the mobility neccessary that a mechanum drive provided. This is why I wanted to consider the possibility of a swerve drive and why I did more investigation.

I first came across the PRINT swerve for FTC by team 9773. They had a very detailed explanation of all the parts and assebly tools. After reading into it more, I decided that the system they created wasn't the best. First, the final cost of the drive train was very expensive; we did not have a very high budget despite help from our sponsors. If this drive train didn't work for some reason after playing with it over the summer or if the chassis didn't make sense to use in Rover Ruckus, we would have almost no money for an alternate drive train since we wanted to presearve Kraken. Also, they parts used by 9773 invovled X-rail rather than extrusion rail from REV. This would cause problems in the future as we wold need to redesign the REVolution system for X-rail. In the end, I decided this was not worth it to pursue.

After further investigation, I found a chassis by team 9048. The swerve they developed looked like a more feasible option. By using REV rail and many of the parts we had, I thought this would be a possible prototype for Iron Reign. Because they didn't have a parts list, we had the find the rough estimate of cost from the REV and Andymark websites. Upon further analysis, we realized that the cost, though cheaper than the chassis of 9773, would still be a considerable chunk of our budget. But I am still motivated to find a way to make this happen.

Next Steps

Possibly scavenge for parts in the house and Robodojo to make swerve modules.

Swerve Drive Prototype

09 Jun 2018

Swerve Drive Prototype By Abhi and Christian

Task: Build a Swerve Drive base

During the discussion about swerve drive, Imperial robotics, our sister team, was also interested in the designs. Since we needed to conserve resources and prototype, I worked with Christian and another member of Imperial to prototype a drive train.

Due to the limited resources. we decided to use Tetrix parts since we had an abundance of those. We decided to make the swerve such that a servo would turn a swerve module and the motors would be attached directly to the wheels. This system would be mounted to a square base. We decided to go ahead and make the base.

Immediatly we noticed it was very feeble. The servos were working very hard to turn the heavy module and the motors had trouble staying aligned. Also, programming the train was also a challenge. After experimenting further, the base even broke. This was a moment of realization. Not only was swerve expensive and complicated, we also would need to replace a module really quickly at competition which needed more resources and an immaculate design. With all these considerations, I ultimately decided that swerve wasn't worth it to use as a drive chassis.

Next Steps

Wait until Rover Ruckus starts so that we can think of a new chassis.

Abbott Intern Week

22 Jun 2018

Abbott Intern Week By Kenna and Austin


Austin and I are interns at Abbott Laboritories' Dallas Site. This summer, we joined all other Abbott High School Interns for intern week. We toured sites all around the country, including Texas, Ohio, and Illinois, meeting other employees and learning what they do at that specific site. I discussed robotics with board members at AMIE (Advancing Minorities in Engineering) and the career implications of beginning in high school. Austin presented the MXP to a room full of interns, engineers, recruiters, analysts, and specialists. Our chaperones were kind enough to spend the week talking to us about their experiences as part of Abbott and the goal of the internship: keeping students interested and involved in STEM.
Even though Intern Week is over, we're both enthusiastic to return to our summer projects. Thus far, the summer has been a wonderfully STEM-filled experience.

Next Steps

As Austin and I continue our internship at Abbott, we're excited to keep getting hands-on engineering experience and learn more about getting a mentor from Abbott. I will be learning and using CAD to optimize a manufacturing process and will be using that experience in our design division in 6832.

Turn Up! at Dallas Love Field

23 Jun 2018

Turn Up! at Dallas Love Field By Justin, Ethan, Charlotte, Kenna, Abhi, and Evan

Task: Present at the Dallas Love Field for the DCOL Turn Up! Event

Every year, the Frontiers of Flight Museum hosts Turn Up!, an event where kids can learn about science and math. Once again, we brought the MXP equipped with 3D printers, Lego sumobots, and our world class FTC robot, Kraken. We ran the sumobots on a table outside of the MXP and 3D printing inside. We also demoed Kraken and Argos, which were great attention grabbers to get kids interested in the MXP. The kids enjoyed programming the Lego sumobots and battling them against each other, as well as creating their very own customized 3D printed key chain. The 3D printers were very busy this year so we had to create extra space outside of the MXP for more laptops with the 3D printing software.

We drove Kraken around the exhibition room and talked to many interested parents about the joy of robotics. While we talked to the parents, someone driving the robot would showcase the capabilities of Kraken by bringing kids glyphs and shaking hands with the relic arm. Kraken was great for showing families what FTC is about. We also had Argos for display but the steering was broken so we didnt drive it. Around 1100 people turned up to the event and we talked to most of them about what we do here at Iron Reign. Turn Up was a great opportunity to introduce kids to the world of STEM and robotics and we hope to have more opportunities like this in the future.

Organization!

25 Jun 2018

Organization! June 25, 2018 By Charlotte

Iron Reign Clutter

One of Iron Reign's greatest weaknesses is the organization of our physical space. It is rare that our workspace is free of clutter, and it is always difficult to find tools or parts that we need. We often joke that when we put an item down it goes in a "black hole," and you won't be able to find it again. This summer, however, we have made a system to tackle this problem and this season we hope to maintain it. We cleared out the front room and set up some shelves and got to organizing. For anyone looking for certain tools or who doesn't know where to put a tool they just found or used, use the article for reference.


This is subject to change, but as we begin the season, here is the current shelf organization:


In the tall black set of drawers, you can find these tools and parts:


  • Top half:
  • Omni Wheels (on the very top)
  • Drill Bits
  • Dremel & Exacto knives
  • Wrenches
  • Screwdrivers
  • Allen Wrenches

  • Bottom half:
  • Servos
  • Torque wrench
  • Bolt cutters
  • Tap & Dice set
  • Extension Cords

  • In the silver drawers on the right side, you can find these tools and parts:


  • On the very top, you can find miscellaneous electronics.
  • Left Side:
  • Pliers
  • Sprockets
  • Motors
  • More motors

  • Right side:
  • Measurement tools & testers
  • USB Adapters (OTG cables)
  • Hardware (screws, bolts, nuts)
  • Wire
  • Zip-Ties

  • In the colorful drawers on the left, you can find these tools and parts:

  • Left side:
  • Mini USB cables
  • Old motor/servo controllers
  • Nuts
  • More mini & micro USB cables
  • Shaft collars
  • Servo cables

  • Middle:
  • Motor mounts
  • Chains
  • Bevel gears
  • Tubing
  • Fabric paint
  • Adhesives
  • Grease
  • REV hardware

  • Right side:
  • Brackets
  • Springs
  • Files
  • Measurement Devices
  • Sandpaper
  • Hand Drills
  • Dremel Kits
  • Rubber Bands

  • We have a long way to go, and we need to put organize these drawers even more and maybe soon label them. If anyone has any questions ask Evan or me (or Tycho if he's home), and make sure you put things back after you use them!

    2018-19 Connect and Outreach Strategy

    30 Jun 2018

    2018-19 Connect and Outreach Strategy By Ethan

    Task: Discuss Iron Reign's Awards Strategy for the Upcoming Season

    FTC is undergoing a series of changes next year that will most likely negatively impact Iron Reign's ability to advance to further levels. Given that there are about 5,400 teams in FTC for the 2017-2018 season and 256 teams advance to worlds, 4.7% of teams advanced to worlds this year. Next year however, the amount of teams will increase, but the amount of domestic teams advancing to worlds will stay the same. Effectively, the percentage of teams advancing to Worlds will decrease, so that some regions may lose advancement spots.

    On top of that, our region has been rumoured to become either a open or semi-open region next year. If so, we'll be facing the ultra-competitive teams from Austin like ViperBots, teams from Arkansas like TechHogs and DivaForce, and any other smaller regions. We've gone against all of these teams before in their respective regionals, and honestly, they generally perform much better than us. So, if this comes true, our chances of advancing to worlds decrease significantly.

    The best plan to advance is still a dual focus on awards and game. So, we need to up our game. Talking about our RV, while still impressive, has lost its luster with Dallas-area judges. We're still using the RV, and doing our normal outreach, but we plan to aggressively pursue business and engineering contacts. We've already received around $5,000 from individual donors, and received a separate $2,500 grant from a local, yet-to-be-named billionaire. In addition, members of our team are working at companies such as Verizon, ESi, Abbott, Parkland, and more; all the while gaining contacts in those industries.

    We have our work cut out for us, this year will be additionally challenging, losing one of our coders and one builder. We're training people in the skillsets that we're losing out over the summer, and we're also seeking FRC teams to mentor (we want to flip the traditional dichotomy of FRC teams training FTC teams on its head). We really want to get to Worlds this year - its the last year that any of the original members are on the team, and we want to go out with a bang.

    Next Steps

    • Seek further business and engineering connections
    • Extend assistance for FIRST outreach
    • Continue team training
    • Continue RV outreach
    • Seek continued grants from TWC and other TX sponsors

    CNC Machine Rehab 1

    01 Jul 2018

    CNC Machine Rehab 1 By Ethan and Charlotte

    Task: Refurbish an Apple II CNC Mill and Lathe Set

    We were helping our school's FRC team clean out their parts closet, which hadn't been cleaned in 10-ish years. Under the layers and layers of FRC junk, we found an Apple II-operated Patterson/Paxton CNC Milling Set. These were meant to run off of a long-since-gone Apple II in a classroom setting. But, it had long been auctioned off, leaving the set useless. But, Iron Reign, as a collective of hoarders, decided to bring these machines over to the house to refurbish.

    The first idea we looked at was emulating the Apple II with an Arduino, as seen here. However, this implementation didn't have the response rate needed for an accurate CNC machine, so we scrapped it. Then, we found this post. The problem that people mainly encounter is that, for some strange reason, Paxton\Patterson used a proprietary parallel port pinout, and deviating from that pinout (read: using a standard parallel cord) would fry the optidriver board in the machine. So, we bought a ethernet-to-parallel port jumper box (UC300eth).

    We then sliced a parallel cable in half, and rewired the wires to the pins, treating the left column of that of the port numbers on the board and the right as the pin numbers of the cables.



    We then made a power supply for the UC300eth. We attempted to use a 10V DC power supply, and use a voltage splitter. Unfortunately, the power spiked, and probably fried the UC300.

    Next Steps

    We need to buy a new UC300 board and hook it up to a laptop with Mach3 to test the power.

    2018-2019 Recruitment

    14 Jul 2018

    2018-2019 Recruitment By Ethan

    Task: Recruit members for the upcoming robotics season

    At the end of last season, we had two members graduate, Austin and Tycho. Their upcoming "goodbye" posts will be posted here, the same as last year. So, we wanted to recruit at least one member to replace them. Recruitment methods that we had used in the past, such as posters and Townview recruitment seminars, had failed to gain any meaningful recruitment. So, we fell back on our secondary, having individual team members submit possible recruits, as well as recruiting from our JV team. This year, we already have Justin. Last year, we had Kenna and Abhi as a submitted recruit. The year before, we had Janavi and Austin.

    These prospective recruits are required to fill out a Google Form on our website, titled signup. We had this post stickied for the better part of last year. Of all the people who were asked to fill out this form, we had three people respond, with a fourth potential recruit being the younger sibling of our leaving members. Our current step is vetting the current recruits - we have two interested in coding, one in building, and one no-show. We're giving the recruits tasks to weed them out, the ones that are less experienced will be shunted back into our JV team.

    Next Steps

    We will recruit 1-3 members out of these recruits and teach them the other aspects that they don't have experience in: writing, code, tools, ect.

    Central Public Library Outreach Event

    14 Jul 2018

    Central Public Library Outreach Event By Ethan, Kenna, Charlotte, and Evan

    Task: Present at the J. Erik Jonsson Public Library

    This Saturday, we drove down to the J. Erik Jonsson library to present at the Dallas City of Learning Discovery Fair. Being on the second floor. we couldn't really bring our RV without significant structural damage. So, we brought our sumo-bot equipment to the library, as well as a few of our new and old bots, such as cartbot, bigwheel, and Kraken. We're eventually going to do a writeup on these bots, but a brief summary of each are:

    • cartbot - We took our old rolling cart and attached motors to it so that it can be driven around. We also attached an air cannon that can shoot cans at kids to enertain them (and us).
    • bigwheel - An attachment that can be dragged around by other robots and hold items.
    • Kraken - Our 2017-18 competition robot.

    We presented for about 4 hours, talking to about 190 kids. We had multiple parents interested in starting FLL teams, and many other children enertained by our new mobile cannon.

    Position Tracking

    18 Jul 2018

    Position Tracking By Abhi

    Task: Design a way to track the robot's location

    Throughout the Relic Recovery season, we have had many issues with the autonomous being inaccurate simply because the scoring was dependent on perfectly aligning the robot on the balancing stone. This was prone to many issues as evidenced by numerous matches in which our autonomous failed. Thus far, we had relied on the encoders on the mecanum chassis to input distances and such. Though this worked to a significant degree, the bot was still prone to loss from drift and running into the glyph pit. We don't know if glyphs will be reused or not but we definitely needed a better tracking mechanism on the field to be more efficient.

    After some investigation online and discussing with other teams, I thought about a way to make a tracker. For the sake of testing, we built a small chassis with two perpendicular REV rails. Then, with the help of new trainees for Iron Reign, we attached two omni wheels on opposite sides of the chassis, as seen in the image above. To this, we added axle encoders to track the movement of the omni wheels.

    The reason the axles of these omnis was not dependent of any motors was because we wanted to avoid any error from the motors themselves. By making the omni wheels free spinning, no matter what the encoder reads on the robot, the omni wheels will always move whichever direction the robot is moving. Therefore, the omni wheels will generally give a more accurate reading of position.

    To test the concept, we attached the apparatus to ARGOS. With some upgrades to the ARGOS code by using the IMU and omni wheels, we added some basic trigonometry to the code to accurately track the position. The omni setup was relatively accurate and may be used for future projects and robots.

    Next Steps

    Now that we have a prototype to track position without using too many resources, we need to test it on an actual FTC chassis. Depending on whether or not there is terrain in Rover Ruckus, the use of this system will change. Until then, we can still experiment with this and develop a useful multipurpose sensor.

    Moon Day 2018

    21 Jul 2018

    Moon Day 2018 By Karina, Ethan, Janavi, and Charlotte

    Task: Reach out to the community and spread the magic of robotics

    Iron Reign had a great time today at the Frontiers of Flight Museum for the 2018 Moon Day. We demoed three of our robots today: Argos, Kraken, and Big Boi. Kids were very interested in watching our robots drive. Big Boi was a fan-favorite because of its speed and the attached can launcher. Kids were also given the opportunity to drive Argos around. We were also able to interest kids in FTC when we explained Kraken, our robot from the previous season and demonstrated how it could pick up glyphs. In total, we spoke to approximately 200 individuals.

    Besides driving our finished robots, we made progress on Garchomp, another robot with mecanum drive serving as a replica for Kraken. We explained our design to people and why we like the mecanum drive so much. Many parents were interested in getting their children involved in a robotics team because they could see the build process at its middle stages in Garchomp and as well as the finished product in Kraken.

    Next Steps

    Here at Iron Reign, we value the community's involvment and interest in robotics. We will continue to make ourselves and our robots accessible to the community at future outreach event, and we will also encourage kids to get involved in STEM.

    Technicbots Chassis Project - July Meeting

    22 Jul 2018

    Technicbots Chassis Project - July Meeting By Kenna, Ethan, Charlotte, Karina, Shaggy, and Abhi

    Task: Compare & Collaborate on Chassis

    At Big Thought's offices in downtown Dallas, three teams met. Technicbots (Team 8565), EFFoRT (Team 8114), Schim Robotics (12900), and Iron Reign are all part of Technicbots' Chassis Project. The goal is for each team to create any number of chassis and improve their building skills by learning from the other teams.

    The meeting began with an overview of all teams' progress. Each team presented their thought process and execution when creating each bot and discussed why/how everything was done. At the end, we all reviewed the rule changes for the 2018-19 season. Once all questions had been asked and answered, testing began.

    Austin Lui of Technicbots gets their chassis ready for testing.

    Using leftover tiles from last season, we set up a small field in Big Thought's blue room. Technicbots provided a ramp to do enhanced testing with. All teams plan on testing:

    • Forward speed
    • 3 second turn
    • Up/Down ramp
    • Balancing stone
    • Weight-pulling
    • Straight line drift
    • 90/180° turn offset

    Connor Mihelic of EFFoRT adds some finishing touches.

    We know from Google Analytics that our website has about 200 visitors a month but we rarely meet the people who read and use our blog posts. Today, we got to meet the mentors of Team 12900 from a middle school in Plano, TX. When they and their students were starting out as a team, they utilized our tutorials and journal. Apparently their teams members are avid followers of our team, which was very meaningful to hear. Some non-FTC friends visited as well and were introduced to cartbot.


    Terri and Grant Richards of Schim Robotics.

    Next Steps

    Using what we learned from the other teams, we will begin to improve all of our chassis. Most of them are at varying levels of completion so now we want to concentrate on getting all of them to the same level of functionality. Garchomp is, notably, the most behind so he will be getting the most attention from here on out.

    Replay Autonomous

    28 Jul 2018

    Replay Autonomous By Arjun

    Task: Design a program to record and replay a driver run

    One of the difficulties in writing an autonomous program is the long development cycle. We have to unplug the robot controller, plug it into a computer, make a few changes to the code, recompile and download the code, and then retest our program. All this must be done over and over again, until the autonomous is perfected. Each autonomous takes ~4 hours to write and tune. Over the entire season, we spend over 40 hours working on autonomous programs.

    One possible solution for this is to record a driver running through the autonomous, and then replay it. I used this solution on my previous robotics team. Since we had no access to a field, we had to write our entire autonomous at a competition. After some brainstorming, we decided to write a program to record our driver as he ran through our autonomous routine and then execute it during a match. It worked very well, and got us a few extra points each match.

    Using this program, writing an autonomous program is reduced to a matter of minutes. We just need to run through our autonomous routine a few times until weare happy with it, and then take the data from the console and paste it into our program. Then we recompile the program and run it.

    There are two parts to our replay program. One part (a Tele-op Opmode) records the driver's motions and outputs it into the Android console. The next part (an Autonomous Opmode) reads in that data, and turns it into a working autonomous program.

    Next Steps

    Our current replay program requires one recompilation. While it is very quick, one possible next step is to save the autonomous data straight into the phone's internal memory, so that we do not have to recompile the program. This could further reduce the time required to create an autonomous.

    One more next step could be a way to easily edit the autonomous. The output data is just a big list of numbers, and it is very difficult to edit it. If we need to tune the autonomous due to wear and tear on the robot, it is difficult to do so without rerecording. If we can figure out a mechanism for editing the generated autonomous, we can further reduce the time we spend creating autonomous programs.

    C.A.R.T. Bot Summer Project

    12 Aug 2018

    C.A.R.T. Bot Summer Project By Evan, Aaron, Abhi, and Janavi

    Task: Enhance our robot-building skills

    At Iron Reign, we hate to waste the summer since it’s a great time to get all the ridiculous builds out of the way. Thus, we created C.A.R.T. Bot (Carry All our Robotics Tools). Our constant companion these last few seasons has been our trusty Rubbermaid utility cart which has been beaten and abused, competition after competition, as it carried all our tools and robots. Because of all of this, we decided it was time to show the cart a little love, and in typical Iron Reign fashion, we went all out and turned it into a robot.

    Our first step was to switch out the back wheels on it to elf-sized bicycle wheels, allowing us to take on the mightiest of curbs and motorize it. To attach the wheels, a four foot or so cylinder of threaded steel was inserted in holes on either side of the cart. Two slots were cut out in the bottom for the wheels and they were eventually slid on, but not after 3D printed mounts for sprockets were attached to the wheels, enabling us to gear them in a one to one ratio with the sprocket attached to the motors, which consisted of two SIM motors commonly found on FRC robots.

    Before we used SIM motors, we attempted to power the cart using two Tetrix motors which were geared for speed but, due to load, barely moved at all. Besides a lack of power, they also tended to come out of alignment, causing a terrible noise and causing the cart to come to a stall. This was quickly scrapped. To mount the motors, we used two pieces of aluminum bars and bolted them to the motors, then screwed them to the floor of the cart, aligned with the wheels. We chained them together and got about powering the system. We got two 12-volt batteries and chained them in parallel so as to not overload the system, and hooked them up to a REV hub. Then, we ran them through a switch and breaker combination. We connected the motors to the rev hub and once we had it all powered up, we put some code on it and decided to take it for a spin.

    It worked surprisingly well, so we went back in and put the finishing touches on the base of Cart Bot, mainly attaching the top back on so we could put stuff on top of it, and cutting holes for switches and wires to run through, to make it as slick as possible. We added a power distribution station to assist with the charging and distribute current to any device we decided to charge on the cart. We will eventually hook this up to our new and improved battery box we plan on making in the few spare moments we’ll have this season, just a quick quality of life improvement to make future competitions go smoothly.

    Next Steps

    Our cart box isn’t done yet, as we intend to make a mount for a solar panel, which we will be able to charge the cart during the downtime in competitions (only if there’s a good window we can park it next to). The cart wasn’t just about having a cool new and improved cart that we don’t have to push (which it is), it also was a test of our engineering skills, taking things that never should have been and putting them together to make something that we will utilize every competition. We learned so much during this experience, I for one learned how to wire something with two batteries as not to destroy the system, as for everyone else, I can’t speak for all but I think we learned a very important lesson on the dangers of electricity, mainly from the height of the sparks from an accidental short that happened along the way. Despite this, the cart came out great and moves smoother than I ever could have hoped. The thing is a real blast and has provided a lot of fun for the whole team, because yes, it is rideable. We predict the speed it’s set at is only a fifth of its full potential speed, and since it already goes a tad on the fast end we don't intend to boost it anymore while there’s a rider on it. Overall, the project was a success, and I’m personally very proud of my work as I’m certain everyone else is too. Come to see it at our table, I really think it’s worth it.

    Dallas Back to School Fair

    18 Aug 2018

    Dallas Back to School Fair By Ethan and Kenna

    Task: Present at the Dallas Back to School Fair at O.W. Holmes

    Today we brought the MXP over to O.W. Holmes Academy in South Oak Cliff for our usual presentation. In the front, we ran sumobits, and in the back, we did 3-D design. The focus on this event was a bit different - it was a back to school event, so the main focus was on getting the children ready for school, while we assisted with educational activities if the parents had spare time. So, while there were about 1.5k people at the event, we talked to a fraction of them. However, every child we talked to really enjoyed the MXP and our activities. In the end, we probably talked to about 130 kids.

    Next Steps

    We have a few more outreach events before our season goes into full swing, so we need to get in touch with as many people as possible.

    Garchomp Part 2

    18 Aug 2018

    Garchomp Part 2 By Janavi and Kenna

    Task: Build the Chassis

    So, we thought we finished but we were wrong, oh so wrong. As you saw in our last post, we thought our chassis was functional. However, after leaving it alone for over a week, Garchomp decided that it didn't want to work any more and 3 out of 4 of the chains came off. First, Kenna and I sat and cried.

    Then we started to diagnose the problem. We noticed that the old tetrix rails we were using had dents in them, which caused the motors to shift, therefore causing the chains to come off the gears.

    We decided to replace the tetrix rails. First we loosened all of the screws on the current bar, carefully slid it out, and replaced it with new bars. This solved one of many problems that we had somehow missed when building our chassis. After fixing all of the chains and confirming that each of them were individually working, we re-attached all of the cables to the robot and ran the code. We discovered that not all of the wheels were running at the same speed because our robot kept on moving in circles. After checking that the motors were working, we discovered that it was our encoder cabels that were plugged in wrong. But finally... After fixing that, and after many, many hours of trying to fix the chassis, we finished! Now, I think, we can safely say our chassis is complete.

    Next Steps

    We will try out more tests on the robot and make sure that it is up to par with our past robots.

    My Summer at MIT

    19 Aug 2018

    My Summer at MIT By Abhi

    Task: Spend a Summer at MIT

    Hello all! You might have been wondering where I went the entire summer while Iron Reign was busily working on tasks. Well for those of you interested, I was invited to spend a month at MIT as part of the Beaverworks program. I worked in the Medlytics course and analyzed medical data using machine learning methods. This seems distant from the work we do in FTC but I learned some valuable skills we could potentially use this season. But before I discuss that, I want to talk about the work I did while I was away.

    Traditionally, machine learning and artificial intelligence were used for enrichment of the technology. We have been seeing development of search engines to learn our searching trends and craft new results or online shopping websites like Amazon learning our shopping to suggest new items to buy. With the help of machine learning, all this has become possible but there are potential healthcare applications to the same technology. The new algorithms and techniques being developed have shown potential to save lives in times where traditional approaches had failed. Even with basic implementations of artificial intelligence, we have seen instances where a doctors provided an improper diagnosis while a machine said otherwise. These scenarios have further inspired research for medical analytics, which has become the focus of my course at MIT. The Medlytics course was dedicated to learn more about these issues and tackle some real world problems.

    The work I was doing was very intensive. I applied the algorithms we were being taught to a number of situations. One week, I was analyzing physiological signals to determine the state of sleep. The next week, I was training models to detect breast cancer from mamograms. Within all this work, the underlying structure was just techniques that could be applied to a number of fields. That brought me to think about the potential applications of my work in FTC. The neural networks and similar models I was training learned a number of scenarios of images or signals. I realized that by integrating computer vision, I could come up with something similar in FTC.

    To demonstrate an example of where this could potentially leave an impact, I will go with object detection. Right now, Iron Reign captures a series of images of the object of interest (an example is a cryptobox from Relic Recovery) and attempts to manually fine tune the OpenCV parameters to fit the object as accurately as possible. This sort of task could easily be delegated to a Convolution Neural Network (CNN) architecture. What is a CNN you ask? Well here is a brief description.

    In essence, the model is able to determine a pattern in an image based on edges and details. The image is processed through a series of layers to determine the shapes in the image. Then the model attempts to label the image as seen above with the car. If this was brought into context of FTC, we could train model to learn the shapes of an object (for example a wiffle ball) and then feed the information to the robot. The bot could then navigate to the object and pick it up. There are a vast number of applications to this, with this just being one. I hope that my knowledge can be of use for Rover Ruckus.

    Next Steps

    Wait for Rover Ruckus reveal to see if I can combine my expertise with new code.

    Hey New Members!

    20 Aug 2018

    Hey New Members! By Kenna

    Hopefully, you're here because you heard our announcement or saw our flyers. Even if not, welcome! We are team 6832 Iron Reign Robotics. We've been a FIRST team since 2010 and currently compete in FIRST Tech Challenge. Some have been on the team for a few months, others over half their lives. We design, build, and code robots, but we also spend a lot of our time on the MXP. We won the Motivate Award at the World Championships for the creation and sustainment of the MXP. On our team you will learn practical skills, like how to solder programming wires, and soft skills, like how to present to a panel of judges.

    If you are interested, please fill out our form for potential members. We are also having an interest meeting at Townview Magnet Center on August 30th in room 363. Feel free to explore our blog or learn more about us.

    Mentor Involvement from MIT

    25 Aug 2018

    Mentor Involvement from MIT By Abhi

    Task: Discuss potential support from MIT

    In a previous post, I mentioned how the knowledge I gained in machine learning at MIT could help the team. But another way our team could be helped is with mentor involvement from MIT. I couldn't have done the research I did at MIT without the help of my amazing instructors. I wanted to bring them on board the Iron Reign way so they could also teach the rest of the team how to be awesome and help us grow. Currently, Iron Reign is speaking with two of my instructors.

    Lyle Lalunio (leftmost in image) is a freshman at the University of California at Berkley. He was an intern this past summer at MIT as part of the Laboratory of Computational Physiology and also the Medlytics program. He is proficient in numerous programming languages including Java and Python. He is pursuing computer science in college but is also interested in the medical applications of the science. Lyle has been an incredible mentor for myself and my teams during my month, inspiring me to invite him to the team.

    Dr. Danelle Shah (2nd from left in image) is a Technical Staff member in Lincoln Laboratory’s Intelligence and Decision Technologies group. Her most recent research has focused on the detection, representation and characterization of human networks by leveraging natural language processing and graph analytics. Dr. Shah earned her Ph.D. in Mechanical Engineering from Cornell University, where she developed algorithms to facilitate natural and robust human-robot interaction. Dr. Shah has also left a great impact on my life and has a background in robotic algorithms, inspiring me to invite her to the team.

    Next Steps

    Continue discussion with mentors about potentially joining Iron Reign.

    Organization!

    25 Aug 2018

    Organization! August 25, 2018 By Charlotte

    Iron Reign Clutter

    One of Iron Reign's greatest weaknesses is the organization of our physical space. It is rare that our workspace is free of clutter, and it is always difficult to find tools or parts that we need. We often joke that when we put an item down it goes in a "black hole" and you won't be able to find it again. This summer, however, we have made a system to tackle this problem and this season we hope to maintain it. We cleared out the front room and set up some shelves and got to organizing. For anyone looking for certain tools or who doesn't know where to put a tool they just found or used, use the article for reference.


    This is subject to change, but as we begin the season, here is the current shelf organization:


    In the tall black set of drawers, you can find these tools and parts:

  • Top half:
  • Omni Wheels (on the very top)
  • Drill Bits
  • Dremel & Exacto knives
  • Wrenches
  • Screwdrivers
  • Allen Wrenches
  • Bottom half
  • Servos
  • Torque wrench
  • Bolt cutters
  • Tap & Dice set
  • Extension Cords

  • In the silver drawers on the right side, you can find these tools and parts:

  • On the very top, you can find miscellaneous electronics.
  • Left Side:
  • Pliers
  • Sprockets
  • Motors
  • More motors
  • Right side:
  • Measurement tools & testers
  • USB Adapters (OTG cables)
  • Hardware (screws, bolts, nuts)
  • Wire
  • Zip-Ties

  • In the colorful drawers on the right, you can find these tools and parts:

  • Left side:
  • Mini USB cables
  • Old motor/servo controllers
  • Nuts
  • More mini & micro USB cables
  • Shaft collars
  • Servo cables
  • Middle:
  • Motor mounts
  • Chains
  • Bevel gears
  • Tubing
  • Fabric paint
  • Adhesives
  • Grease
  • REV hardware
  • Left side:
  • Brackets
  • Springs
  • Files
  • Measurement Devices
  • Sandpaper
  • Hand Drills
  • Dremel Kits
  • Rubber Bands

  • We have a long way to go, and we need to put organize these drawers even more and maybe soon label them. If anyone has any questions ask Evan or I, and make sure you put things back after you use them!

    2018-19 Recruitment

    30 Aug 2018

    2018-19 Recruitment By Ethan, Kenna, Charlotte, Janavi, Abhi, and Arjun

    Task: Recruit new members for the 2018-19 season

    Last year, Iron Reign lost two members, so we're only looking for 2-3 members to replace them and their particular skillsets. However, our sister team, Imperial Robotics (3734) lost nine members. So, we decided to host a recruitment session at our school to find interested freshmen.

    We put up posters around the school, and got a healthy crowd - 30 people. We talked about Iron Reign's history, needed levels of commitment for various teams, and what the average person will do on the team. We also answered questions about the team from the crowd. Of those people who attended, 17 signed up for a testing session next week, including two former members of Iron Reign, Alisa and Trace.

    Next Steps

    We will hold training sessions to assess each potential members skills, then divy them up with Imperial Robotics.

    Bigwheel Presentation

    03 Sep 2018

    Bigwheel Presentation By Arjun and Karina

    Task: Present about Garchomp

    As a new freshman on Iron Reign, I took on the responsibility of a robot we called Bigwheel. Karina and I worked on getting the robot into something that could be put through load tests, meaning tightening the chain, fixing misaligned sprockets, and getting the wiring together. We participated in the Chassis Presentation workshop hosted by technicbots for teams all around the North Teas region to work on one or more chassis, perform various tests with them and then present their findings. We presented our chassis Bigwheel, which is driven by 2 large 8-inch wheels, with a pair of 2 free-spinning Omni wheels in the back. This can be seen in the presentation below:

    To create our chassis we used 2 8-inch wheels, each driven by 2 Neverrest 60 motors. There are also two free-spinning omni wheels in the back. The robot uses REV rails and plexiglass for it's main body.

    Our first test is the 5-second distance test. Our robot had a lot of torque due to the Neverrest 60 motors, so it moved slower than other robots, but was unaffected by the additional 30lbs weight.

    Our second test is the 3-second turn test. Again, some other robots could turn better faster than us. However, due to having no proper mechanism for restraining our weights, along with other mysterious problems such as battery disconnections that only happened during this test, we were unable to try this test with load, however we presume that due to the torque, the results should be similar to those without load. Our center of rotation is also off due to only the front two wheels being powered. As such, the back of the robot makes a wide arc as it turns.

    Our next few test results are unremarkable.

    Our robot had a lot of sideways drift, mostly due to bad build quality. If we intend to use it during the season, we will try to fix this.

    Overall, our chassis performed well under load, but could use a little speed boost. If we want to further develop it, we plan to use Neverrest 20s with more torque on our extarnal gear ratio, so we can get more speed out of it.

    Garchomp Presentation

    03 Sep 2018

    Garchomp Presentation By Janavi and Kenna

    Task:

    After months and months of Kenna and I working on our chassis, all of our work finally accumulated in our presentation. We participated in the Chassis Presentation workshop hosted by technicbots for teams all around the North Teas region to work on one or more chassis, perform various tests with them and then present their findings. We presented our Chassis Garchomp who is a mechanum wheel chassis as can be seen in the slide photos below.

    Presentation

    To create our chassis we used 4 never rest 40 motors one for each wheel and the structure of the chassis was created by using tetrix rails. We connected the wheels to the motors by using a 1:1 gear ratio. While there are many benefits to using a gear ratio for your wheels be forewarned that if your wheels are not perfectly alligned attaching your chains to mechanum wheels will become a living nightmare as can be seen in our previous posts.

    One of the reasons that attaching the chains was so difficult for us was because we discovered that because we had used wooded sides instead of the aluminium sides that Kraken used our wheels became misaligned to the who different types of wood used for the two sides.

    Our robot is not able to turn relatively fast but as can be seen on Kraken it is able to hold alot of load and move at a constant speed

    Since this chassis was designed for last years competition it is able to consistently drive onto the balancing stone

    North Texas Invitational Presentation Series - Worlds

    03 Sep 2018

    North Texas Invitational Presentation Series - Worlds By Ethan, Abhi, Janavi, Kenna, Charlotte, Evan, Karina, and Justin

    Task: Present about Worlds to new teams

    This was our last presentation in a series of presentations hosted by Technibots for new and returning teams in the North Texas region. This particular presentation was about strategies in awards and the game, as well as general thoughts about FTC and Worlds.

    Presentation

    2018 Business & Strategy Draft 1

    08 Sep 2018

    2018 Business & Strategy Draft 1 By Ethan

    Task: Write a business plan draft

    Intro

    This year is Iron Reign's eleventh season in FIRST, our ninth year overall. We've participated in five years of FLL and seven years of FTC.
    While our team originated at WB Travis Vanguard and Academy, as our members became older (such is the passage of time), we moved to the School of Science and Engineering at Townview (SEM) in DISD. Despite our school being 66% economically disadvantaged and being Title 1, our school consistently ranks in the top 10 nationwide academically. Our school also has numerous other award-winning extracurricular clubs; including CX Debate, Math/Science UIL, and more. Our school employs a rigorous STEM-based curriculum, which provides our students access to specialized class schedules, such as Engineering, Computer Science, and Math, as well as paying for AP classes that our students would normally not be able to afford. The average SEM student takes at least 10 APs.

    A History of Iron Reign

    Iron Reign has been a team for nine years. We initially started as a First Lego League (FLL) team, plateauing in regionals every year we competed. This was usually not due to the actual "robot game" in FLL, but because of our presentations. Starting there, Iron Reign was defined as focusing on creative and innovative designs. We also did Google's Lunar X Prize program every summer, achieving finalist status in 2011 and 2012. Upon moving to high school, we started doing FTC, as FRC was too cost-prohibitive to be parent-run.
    We have been an FTC team for 7 years, advancing further and further each year. In Velocity Vortex, we got to the South Super Regionals, qualifying by winning the North Texas Inspire Award, which means that we represent all parts of the competition, from teamwork, to the presentation, to creativity, and to the actual game. In Georgia, the same year, we were the first alternative for Worlds if another team dropped out.
    Then, last year, we finally got to Worlds. We got there in two ways: the 2nd place Innovate award at Supers, and also got the lottery, on the prior merits of being a FIRST team for so long. There, we got the recognition that we'd been seeking – we won the Worlds Motivate Award.
    In the same vein, we compete in the Texas UIL State Championships. For those unfamiliar with UIL, it is the main organizational committee for all public school academic and athletic events in the state of Texas. Through UIL, we helped compete in the first test program for the UIL Robotics program and since then have competed in every subsequent tournament. This year, it finally got out of the trail period, and became a full-fledged competition.

    Outreach

    Our outreach stands out from other teams through our mode of presentation. Last year, we renovated a 90's Seaview Skyline RV, took out the "home" components, such as the bathroom and bedroom, and turned it into a mobile tech lab, so that we can bring STEM to underprivileged demographics within our community. Our RV currently holds 4 3D Printers, 30+ computers, 3 widescreen TVs, and 1 microwave. Our current curriculum consists of teaching kids 3D modelling in the back of the RV, using Google Sketchup, as it is free and available to any family with a computer. We usually help them design keychains, as they are memorable, but don't take excessive time to print on our printers. In the front, we teach kids how to use EV3 robots and teach them how to use the EV3 programming language to compete in a sumo-bot competition. We also give advice to parents and educators on how to start FIRST teams.
    To make Iron Reign's history entirely clear, we **built** the RV two years ago. We do not claim any credit for the actual construction of the RV in this journal; however, we do share the goals of this program: making the RV run as a standalone program, expanding the program to other communities, and serving more and more underprivileged communities in Dallas. To our own standards, we have achieved this.
    Our current funding services for the operation of the RV come from Best Buy, who purchased the thirty-plus laptops and four 3D printers. We receive grants from non-profits such as BigThought and Dallas City of Learning to fund events and provide staff (even though our team provides staffing).
    When not in outreach service, we can transform our RV into tournament mode. We have taken numerous long-distance road trips aboard our RV, with locations such as Austin, Arkansas, Oklahoma, and Florida. We substitute the laptops for a band saw and drill press, use the flat screens to program instead of teach, and bring our higher-quality personal 3D printer. At tournaments, we encourage other teams to board our RV, not only to encourage them to start their own similar programs, but also to help them with mechanical and building issues.
    Iron Reign spends a lot of time on outreach. So far, we've spent 84.5 man-hours and talked to just under 2000 people (1995) within our community. Our goal of this outreach is to reach disadvantaged children who would not normally have the opportunity to participate in STEM programs in order to spark their interest in STEM for future learning. Some of our major outreach events this year include Love Field Turn Up!, where we reached 1100 children from around the Metroplex. We've worked for our school district in various circumstances, including bringing children back-to-school STEM education and running orientations for our high school.
    We also represent FIRST in a variety of ways. At our Mobile Learning Lab events, we talk to parents and educators about starting their own FLL and FTC teams. We currently mentor our school's FRC team Robobusters and are in the process of founding another. We are the mentors for our sister team, FTC 3734 We also provide help as-requested for FLL teams to go back to our roots. As well, we've historically hosted underfunded teams for late-night-before-tournament workshops.
    DateEventPeopleHours# People
    ---------------
    2018-08-18Back to School FairEthan, Kenna6.5130
    2018-08-01SEM Summer CampArjun6175
    2018-07-21MoonDayKarina, Ethan, Janavi, Charlotte26200
    2018-07-14Dallas Public LibraryEthan, Kenna, Charlotte, Evan16190
    2018-06-23Turn Up! Dallas Love FieldJustin, Ethan, Charlotte, Kenna, Abhi, Evan241100
    2018-04-26SEM OrientationShaggy6200
    84.51995

    Business and Funding

    Iron Reign, for the past two years, has increasingly ramped up its funding. We aggressively seek out new sponsors so that we can continue to keep Iron Reign great. Currently, these include:
    • BigThought - RV materials, staffing, and upkeep
    • Dallas City of Learning (DCOL) – RV materials and upkeep
    • Best Buy – 4x3D Printers, Laptops for RV
    • DISD STEM – Practice field and tournament funding
    • RoboRealm - $1500 of machine vision software
    • Dallas Makerspace – Access to machining tools
    • DPRG – Robot assistance
    • Mark Cuban - $2500

    We are always seeking more funding. We apply for the FIRST and FIRST in Texas grants every year, and seek grants from STEM-curious companies and individuals in the Dallas area. We have applied for grants from Orix and Mark Cuban, receiving personal funding from the latter. We receive staffing and upkeep from a local Dallas non-profit, BigThought. Currently, we are seeking funding and assistance from Ernst and Young, an international company with a Dallas branch, that a team member works for.
    In previous years, we have lacked the ability to get significant transportation funding to get to tournaments. However, through our partnership with DISD, we have solved that problem, and when DISD is unable to provide transportation due to short notice, we can provide our own transportation due to our building of the RV.

    Reference Business Letter


    To whomever it may concern,
    My name is Abhijit Bhattaru, and I am currently a member of Iron Reign Robotics at the School of Science and Engineering at Townview, a DISD magnet school whose population is 66% economically disadvantaged. We have been a FIRST team for about nine years, over half of some of our members' lives. For the past six years, we have operated as FTC Team 6832, Iron Reign. We've achieved various forms of success in these years, culminating with our rise to the Houston World Championship this year, winning the Motivate Award, an award for outstanding outreach within our community.
    What makes our team stand out from other teams is our dedication to our community. Two years ago, we converted a Sea View RV into a Mobile Learning Lab equipped with 4 3D printers, 15 EV3 robots, and 30 laptops to teach children basic programming and 3D modelling. The purpose of all of this is to start a spark of STEM in underserved communities so that these children can later go into STEM. And, we have expanded this program nationwide, presenting at the National Science Teachers' Association national conference in 2017. We have partnered with local nonprofits such as Big Thought to fund our outreach expenses, and to reach out to interested communities across Dallas, and the nation, to expand our program.
    So, why do we need your help? Our school is 66% economically disadvantaged, and adding to that, DISD is facing up to[an $81 million budget gap](https://www.dallasnews.com/opinion/commentary/2018/03/24/without-local-tax-hike-dallas-isd-could-face-fiscal-disaster). The district's funding for robotics has been dropping to the point where only the basics are covered and even then come too late in the season due to red-tape. The one silver lining is that the DISD STEM Department is still able to handle most of our competition travel expenses. This offsets our largest expense category. But we still have to fund the development of our robot, and we aim high. Our robot earned an Innovation Award at the twelve-state South Super Regional Championship this year. We try to push the boundaries of design and execution and this requires a different level of funding for parts, materials and tools.
    To achieve this higher level of funding, Iron Reign is aiming to create a 501(c)(3) foundation to avoid the level of red tape and financial mismanagement from DISD that we have experienced for the past several years. This is where you come in, Mr. Cuban. We are asking for a seed donation for this non-profit, so that our team can become a free-standing team unhampered by DISD's bureaucracy. Our mission would still be to serve our school and community, as it has been for the past eight years, but we would be able to avoid DISD's mismanagement.
    If the money is not utilized for a seed donation, we would allocate it for new robot parts and equipment. A starter kit for FTC is at least $600 but this is nowhere close to cost of a World Championship robot. To become more successful in the robot game for the following seasons, we would need a higher investment into parts, considering many things can go wrong in an 8 month season. Your donation to the cause would allow us to become more successful.
    In return for your investment, Iron Reign will set out to accomplish what you desire from us. We can promote you and your companies on our website, presentations, etc. However, this is just one option. We are open to helping you in whatever way you would like in return for your help to our team.
    Thank you for taking the time to consider our request, and if you happen to have additional time, we would like you to look over our previous Engineering Journals[here](http://www.ironreignrobotics.com/) to see our team's engineering process and history. To see a video about our robot, please visit https://www.youtube.com/watch?v=TBlGXSf-8A
    Also, since you were not able to meet with us, we thought we would bring ourselves to you. Here is a video of our team and the FIRST Tech Challenge program.
    Thanks for your consideration,
    Iron Reign (6832)"

    Looking Back, Moving Forward

    Recently, Iron Reign has put a large emphasis on recruitment. We have alternating years with high turnover due to graduation, so we hold recruitment meetings at our school every year for both Iron Reign and Imperial Robotics.
    We already have another team in our school, team 3734 Imperial Robotics. **3734 is an entirely different team, with different sponsors, members, robots, journal, outreach, and codebase.** That being said, we recruit the more accomplished members of that team. The teams' relationship is most similar to the difference between a Junior Varsity team and a Varsity team.
    We tend to recruit based on robotics experience, but having robotics experience alone is not a guarantee of joining our team. Iron Reign has a specific culture, and we tend to recruit people whose personalities fit our culture. We also do not accept people who only want to join robotics as a resume booster. While robotics is indeed a resume booster, and we allow every member to claim co-captain on their college applications, members of Iron Reign ought to join out of their genuine passion for robotics, not because of it getting them ahead in the rat race of college applications.

    Remaining Sections

    Strategy

    Building

    Programming

    Design Process

    Budget

    Next Steps

    We will finish drafting the remaining sections after Kickoff brainstorming is completed.

    Post Kickoff Meeting

    08 Sep 2018

    Post Kickoff Meeting September 08, 2018 By Karina, Charlotte, Ethan, Evan, Kenna, and Abhi

    Meeting Log September 08, 2018

    Today Iron Reign attended the FTC 2018-2019 season kickoff at Williams High School. After the event, we gathered back at our coach's house to talk about how we might approach this season's challenge. We welcomed prospect team members as well. They joined us in reviewing the reveal video and the games manuals.

    Today's Meet Objectives

    We wanted to have an understanding of the game design so that we could start going over robot designs. To do this we:

    • Watched the reveal video
    • Skimmed through game manual 1 and the preview of game manual 2

    Until we receive the field elements, we will have to plan and strategize using the above listed resources.

    Because we also had new possible team members over, we set expectations for this year. Actively recording our progress and blogging for the engineering journal was heavily stressed. We recognize the importance of having a good engineering journal and how it can help us advance. Our coach's house, the place where we have our meetings, is also cleaner than it has been in a long time after an intense cleaning session. Having an organized space maximizes efficiency, especially with the a larger team. Therefore, we expect for all team members to clean up after themselves and maintain the organization.

    Before we could discuss robot build ideas, we talked strategy. Parking in the crater and the landing zones will undoubtedly be easy to do. Since we know that designing a way for our robot to be able to lift itself onto the lander will be a more interesting challenge and will score us the most points, we will prioritize working on prototypes mechanisms for this task. Finding a way to gently lower down form the lander may be difficult. We will have to condsider ways to not damage the robot, wiring, etc. We also agreed that it would make the most sense to have one mechanism that latches onto the hook on the lander, grabs gold and silver elements from the crater, and places these elements into the columns.

    Other topics we talked about include drive trains, problems with trying to create a mechanism that grab both the silver balls and gold blocks, as well as how we would be able to grab them out of the crater without going over the edge of the crater and getting stuck.

    Also, in previous seasons, we have had strong autonomous game, and so we decided to make the tasks in autonomous another top priority. We had our coders start discussing the field path for autonomous. Unfortunately, we will not be able to launch our team marker into the team depot.

    After the end of last season, a storm passed through and turned over shelves, trashing the robo-dojo. Some of our team members cleaned up the tent this afternoon. While it may not seem very important at the moment, this will be very helpful later in the season once we get our field elements for this year's challenge and want to set the field up. While cleaning, they also uncovered old, rusted metal tools and and pieces, which we will now be able to repair and save for future use. Yay! Clean practice field and more tools!

    Besides helping with cleaning the tent, the new members showed a lot of interest in the game as well. They were eager to start building, and actually started creating prototype mechanisms for picking up the silver and gold elements.

    Today's Work Log

    Team MembersTaskStart TimeDuration
    KarinaWorking on blog2:004 hrs
    AbhiAutonomous planning2:004 hrs
    EvanRobot brainstorming2:004 hrs
    CharlotteRobot brainstorming2:004 hrs
    EthanWorking on blog2:004 hrs
    KennaCleaning tent2:004 hrs

    Relic Recovery Brainstorming & Initial Thoughts

    08 Sep 2018

    Relic Recovery Brainstorming & Initial Thoughts By Ethan, Charlotte, Kenna, Evan, Abhi, Arjun, Karina, and Justin

    Task: Come up with ideas for the 2018-19 season

    So, today was the first meeting in the Rover Ruckus season! On top of that, we had our first round of new recruits (20!). So, it was an extremely hectic session, but we came up with a lot of new ideas.

    Building

    • A One-way Intake System
    • This suggestion uses a plastic flap to "trap" game elements inside it, similar to the lid of a soda cup. You can put marbles through the straw-hole, but you can't easily get them back out.
    • Crater Bracing
    • In the past, we've had center-of-balance issues with our robot. To counteract this, we plan to attach shaped braces to our robot such that it can hold on to the walls and not tip over.
    • Extendable Arm + Silicone Grip
    • This one is simple - a linear slide arm attached to a motor so that it can pick up game elements and rotate. We fear, however, that many teams will adopt this strategy, so we probably won't do it. One unique part of our design would be the silicone grips, so that the "claws" can firmly grasp the silver and gold.
    • Binder-ring Hanger
    • When we did Res-Q, we dropped our robot more times than we'd like to admit. To prevent that, we're designing an interlocking mechanism that the robot can use to hang. It'll have an indent and a corresponding recess that resists lateral force by nature of the indent, but can be opened easily.
    • Passive Intake
    • Inspired by a few FRC Stronghold intake systems, we designed a passive intake. Attached to a weak spring, it would have the ability to move over game elements before falling back down to capture them. The benefit of this design is that we wouldn't have to use an extra motor for intake, but we risk controlling more than two elements at the same time.
    • Mechanum
    • Mechanum is our Ol' Faithful. We've used it for the past three years, so we're loath to abandon it for this year. It's still a good idea for this year, but strafing isn't as important, and we may need to emphasize speed instead. Plus, we're not exactly sure how to get over the crater walls with Mechanum.
    • Tape Measure
    • In Res-Q, we used a tape-measure system to pull our robot up, and we believe that we could do the same again this year. One issue is that our tape measure system is ridiculously heavy (~5 lbs) and with the new weight limits, this may not be ideal.
    • Mining
    • We're currently thinking of a "mining mechanism" that can score two glyphs at a time extremely quickly in exchange for not being able to climb. It'll involve a conveyor belt and a set of linear slides such that the objects in the crater can automatically be transferred to either the low-scoring zone or the higher one.

    Journal

    This year, we may switch to weekly summaries instead of meeting logs so that our journal is more reasonable for judges to read. In particular, we were inspired by team Nonstandard Deviation, which has an amazing engineering journal that we recommend the readers to check out.

    Programming

    Luckily, this year seems to have a more-easily programmed autonomous. We're working on some autonomous diagrams that we'll release in the next couple weeks. Aside from that, we have such a developed codebase that we don't really need to update it any further.

    Next Steps

    We're going to prototype these ideas in the coming weeks and develop our thoughts more thoroughly.

    2018 Kickoff

    08 Sep 2018

    2018 Kickoff By Ethan, Evan, Kenna, Charlotte, Abhi, Justin, Karina, and Arjun

    Task: Attend the North Texas FTC Kickoff

    Today, we went to the Rover Ruckus kickoff! This year's main challenge is getting blocks (gold) and balls (silver) into the main lander. The other side challenges, in order of hardness, are hanging, parking, and placing the team marker. The main upside of all of this means that it is theoretically possible to perform every single function on the field with the same mechanism.

    The main non-robot game changes are the elimination of Supers, the standardization of awards, and Worlds spot changes. The one that particularly piqued our interest was the award standardization. If y'all aren't aware, there are huge disparities between the awards in North Texas and the awards at Worlds. For example, in North Texas, we'd continually win the Connect Award for our outreach (while in the rubric, it was the award for connecting with engineers). But, at Worlds, we won the Motivate Award instead. So, we're actually happy about this change, as we've historically been frustrated with this awards gap.

    Next Steps

    We will do a brainstorming session to figure out are design paths for the next few weeks. In addition, we need to complete sorting of the new members.

    Testing Intakes

    09 Sep 2018

    Testing Intakes By Ethan, Evan, Aaron, and Freshmen as to be determined

    Task: Design a prototype intake system

    In our first practice, we brainstormed some intake and other robot ideas. To begin testing, we created a simple prototype of a one-way intake system. First, we attached two rubber bands to a length of wide PVC pipe. This worked pretty well, but the bands gave way a little too easily.

    For our next prototype, we attached a piece of cardboard with slits to a cup approximately the size of a cube or block. It operates similarly to a soda cup lid with a straw hole. An object can go in, but the corners of the hole spring back so that it can't escape.

    Next Steps

    We probably won't go with this design - we'd have issues seperating the different kinds of game elements, and it may be too slow to feasibly use. But, its a first step and we'll see what happens.

    Rover Ruckus Strategy

    10 Sep 2018

    Rover Ruckus Strategy By Ethan, Kenna, Charlotte, Evan, Abhi, Justin, Karina, and Aaron

    Task: Determine the best Rover Ruckus strategies

    Challenge Game Timing Points Level of Difficulty (1 - 3 [hard]) Priority Idea
    Landing Autonomous 30 2 Medium
    Claiming Autonomous 15 1 High
    Parking Autonomous 10 1 High
    Sampling Autonomous 25 2 Medium
    Latching End Game 50 3 High
    Robot in Crater End Game 15/25 1 High
    Mining [Depot] Tele-Op 2 per item 1 High
    Mining [Cargo] Tele-Op 5 per item 2 High

    Brainstorming Two - Enter the Void

    15 Sep 2018

    Brainstorming Two - Enter the Void By Evan, Abhi, and Janavi

    Task: Have a 2nd brainstorming session

    Last week, we had a lot of new recruits show up for the FTC kickoff. In fact, a bit too many. Luckily for us, we either scared them off or they realized that they'd like to move to FRC. So, today's session was a bit more managable, and we were able to break down into some new building tasks.

    Intake System 3 - TSA Bag Scanner

    If any of y'all have ever been on an airplane, you've gone through airport security. This part of our robot is inspired by the bag-scanning machine, more specifically the part at the end with the spinning tubes. The basic design would be like a section of that track that flips over the top of the robot into the crater to intake field elements.

    Intake System 4 - Big Clamp

    This one is self-explanatory. Its a clamp, that when forced over a block or a cube, picks it up. It's not that accurate, but it's a good practice idea.

    Lift 2 - Thruster

    We want to make lifting our robot easy, and we're thinking of a slightly different way to do it. For our new lift idea, we're installing a vertical linear slide that forces the robot upwards so that we can reach the lander.

    Next Steps

    We're working on building these prototypes, and will create blog posts in the future detailing them.

    Meeting Log

    15 Sep 2018

    Meeting Log September 15, 2018 By Charlotte, Karina, Kenna, Janavi, Evan, Abhi, Justin, and Ethan

    Meeting Log September 15, 2018

    Today Austin, an Iron Reign alumni, visited us from A&M! :)

    Today's Meet Objectives

    As our brainstorming and discussion continues, we are putting our ideas into action and making various prototypes and designs. We will continue to work with our new recruits and let them participate in a meaningful way with our building and in getting ready for competition.

    Since the game has been released, some teams have already revealed robot reveals, like a 30 hr robot video that was recently posted. We watched and discussed this video. Though we will probably not use these designs, we have learned a lot from them about the game and what kind of competition we should expect.

    Since last meeting, we have begun prototyping the many ideas we have discussed, often with unconventional materials. Today, Abhi worked on a hook for hanging off the rover at first with Styrofoam, and then began a 3D model. Evan started working with our new linear slides (see the picture below); we expect to use linear slides a lot this year, with reaching into the craters and hooking onto the rover. We pre-drilled some holes into these new slides using an optical punch and a drill, but. Janavi worked with a different linear slide kit, this kit is lighter than our new kit, which is helpful, but it is very delicate and requires precision to put together.

    Evan looking through an optical punch

    Evan with a linear slide

    Many of our new recruits returned today and have continued to be active. During the week, we received the field parts, so we had them help us put it together so that they can be familiar with the field design and with certain power tools. They also helped with various devices we worked on, like the linear slides, etc.

    Field assembly progress from our new recruits.

    We plan to use the chassis we built this summer for preliminary autonomous testing. Janavi and Kenna got Garchomp up and running today and added a better and more secure phone holder so we can run autonomous. We began exploring in Open CV so that we can have a visual tool to find the gold minerals; the algorithms we are exploring can be used for both autonomous and tele-op. We also began mapping autonomous after our discussions last time and we began to make our marker.

    Open CV progress

    Today's Work Log

    Team MembersTaskStart TimeDuration
    KarinaRobot build and team marker design2:004 hrs
    AbhiOpen CV2:004 hrs
    EvanPrototyping2:004 hrs
    CharlotteBlog and brainstorming2:004 hrs
    EthanWorking on blog2:004 hrs
    KennaRobot build2:004 hrs
    JustinField assembly2:004 hrs
    JanaviPrototyping2:004 hrs

    Chassis Brainstorming

    22 Sep 2018

    Chassis Brainstorming By Ethan and Evan

    Task: Brainstorm chassis designs

    At the moment, we've used the same chassis base for three years, a basic mechanum base with large wheels. However, we don't really want to do the same this year. At the time, it was impressive, and not many teams used mechanum wheels, but now, its a little overdone. So, as the true hipsters of FIRST Tech Challenge, we want to move onto something new and fresh.

    Thus, we have BigWheel. We used this as a practice design, but we ended up really liking it. It starts off with two large rubber wheels, approx. eight inches in diameter, mounted at the back and sides of the robot. Then, we have two geared-up motors attached to the motors for extra torque and power. In the front, we have a single omniwheel that allows our robot to turn well.

    Proposed Additions

    First, we need to add an intake system. For this, we're considering a tension-loaded carwash that can spring out over the crater wall. It'll pull elements in and sort them through our intake using our seperator, which we will detail in a later post. Then, the robot will drive over to the lander and lift itself up. Since the main segment of the robot is based off of two wheels, we're attaching a telescoping slide that pushes off of the ground at the opposite end and pivots the front of the robot upwards. Then, the intake will launch upwards, depositing the elements in the launcher.

    Next Steps

    We need to create a proof-of-concept for this idea, and we'd like to create a 3D model before we go further.

    Meeting Log

    22 Sep 2018

    Meeting Log September 22, 2018 By Charlotte, Janavi, Evan, Abhi, Justin, Ethan, Arjun, Karina, and Kenna

    Meeting Log September 22, 2018

    Home Depot Trip!

    Today's Meet Objectives

    As we are starting to make more serious strides in our robot and strategy, we wish to start passing down knowledge to our new recruits. Today, we are going to continue prototyping with grabbers and various linear slide kits and we need to discuss strategy and organization for this season.

    Today we have discussed more about what we want our strategy to look like. An option we are heavily considering is having a non-moving robot, in the sense that our robot is stationary and all game actions are performed using extensions from the robot, using linear slides, etc. We have discussed what game rules we need to consider, like what "parking" consists of during autonomous.

    We have continued prototyping various grabbing mechanisms with sorting ability, one passive and one active sorter. The passive version we modelled in Creo and printed before practice, and the active was modelled using Legos! Our new rectuits have been helping us prototype also, as we have been making a version 2 for the active model.

    Passive model
    Active model

    Some of the materials we are working with require power tools that we don't have or were damaged by rain. One of the linear slide kits we are working with is stainless steel, which requires a chop saw which we didn't have. We made a trip to Home Depot and came back home to set up our new baby. Here it is in action:

    Our new recruits finished up the field today! We are glad we had this project for them to do, as they could become familiar with building on a team while doing meaningful work. They ran into some problems along the way, but we only gave them a gentle push and let them problem solve themselves; these problems include difficulty with putting on the top part of the lander, improper placement of the wing nuts, alignment of the lander in the foam tiles, and more. Some of their difficulties stemmed from the field parts being machined inaccuately, so pieces didn't line up perfectly. They had use their own problem solving to get past these diffculties and the field looks great!

    Our freshman recruits! Look how cute they are :)

    Evan and Janavi finished up the linear slides they were working on last week. In the previous meeting log, I described the difference between the two, but now that they are done we are going to test them both. As we build a chassis (or a wheel-less chassis) we are going to try both types to see how the weight, strength, friction, string tension, and other factors affect our gameplay.

    Battle of the Slides

    Karina narrowed down the ideas for a marker and she, with Kenna, has began building it. More details to come in later posts.

    For autonomous, we have been putting a strong priority in computer vision using Open CV. While we are waiting to begin code, we are testing many algorithm in Open CV, so we can accurately and consistenly detect field minerals. These algorithms consider shape and color to map points to predict the location of the minerals. Ideally, we will perfect our algorithms to find exactly where the gold block is among the three minerals during autonomous.

    Today, Justin worked on making the location sensor (our fail-safe in case our encoders fail) smaller and more lightweight to help us meet with this year's size requirements (something we have had trouble with in the past). Also, he tested the different chassis we build this summer on the field to see how they interact with the terrain (aka the crater). He found that Big Wheel was too long and didn't go over the crater at all unless it was backwards and got a running start. Garchomp (with Mechanums) went over the craters fine.

    Today's Work Log

    Team MembersTaskStart TimeDuration
    KarinaRobot build and team marker design2:004 hrs
    AbhiOpen CV and build2:004 hrs
    EvanBuild2:004 hrs
    CharlotteBlog and brainstorming2:004 hrs
    EthanWorking on blog2:004 hrs
    KennaRobot build2:004 hrs
    JustinBuild and field assembly2:004 hrs
    JanaviBuild2:004 hrs
    ArjunCode and blog2:004 hrs
    Contact Us

    E-Mail: ironreignrobotics@gmail.com Website: In the address bar